
Simulink® Real-Time™

Device Drivers

R2017a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Real-Time™ Device Drivers Guide
© COPYRIGHT 2007–2017 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

March 2007 Online only New for Version 3.2 (Release 2007a)
September 2007 Online only Updated for Version 3.3 (Release 2007b)
March 2008 Online only Updated for Version 3.4 (Release 2008a)
October 2008 Online only Updated for Version 4.0 (Release 2008b)
March 2009 Online only Updated for Version 4.1 (Release 2009a)
September 2009 Online only Updated for Version 4.2 (Release 2009b)
March 2010 Online only Updated for Version 4.3 (Release 2010a)
April 2011 Online only Updated for Version 5.0 (Release 2011a)
September 2011 Online only Updated for Version 5.1 (Release 2011b)
March 2012 Online only Revised for Version 5.2 (Release 2012a)
September 2012 Online only Revised for Version 5.3 (Release 2012b)
March 2013 Online only Revised for Version 5.4 (Release 2013a)
September 2013 Online only Revised for Version 5.5 (Release 2013b)
March 2014 Online only Revised for Version 6.0 (Release 2014a)
October 2014 Online only Revised for Version 6.1 (Release 2014b)
March 2015 Online only Revised for Version 6.2 (Release 2015a)
September 2015 Online only Revised for Version 6.3 (Release 2015b)
March 2016 Online only Revised for Version 6.4 (Release 2016a)
September 2016 Online only Revised for Version 6.5 (Release 2016b)
March 2017 Online only Revised for Version 6.6 (Release 2017a)

Contents

Customizing Simulink Real-Time Drivers
1

Custom Simulink Real-Time Drivers 1-2
Simulink Real-Time Drivers . 1-2
When to Write Your Own Drivers . 1-2
Restrictions on Customizing Simulink Real-Time Drivers . . . 1-3
Expected Background . 1-3
Resources for Customizing Simulink Real-Time Drivers 1-4
What Makes Up a Simulink Real-Time Driver? 1-6

Before You Start . 1-8
Introduction . 1-8
Driver Types . 1-9
Bus Types and I/O Access . 1-9
Register Access . 1-10
Inlining Simulink Real-Time Drivers 1-10

Creating a Custom Driver . 1-11

Preparations for Debugging . 1-15

PCI Drivers
2

PCI Bus Drivers . 2-2
Introduction . 2-2
PCI Configuration Space API . 2-3
Memory-Mapped Accesses . 2-5
I/O Port Accesses . 2-5
Sample PCI Device Driver . 2-6

v

ISA and PC/104 Drivers
3

ISA and PC/104 Bus Drivers . 3-2
Introduction . 3-2
I/O Mapped . 3-2
Memory Mapped . 3-2

Masking Drivers
4

Creating Driver Subsystem Masks . 4-2

Driver Mask Guidelines . 4-3

Cross-Block Checking . 4-5

When You Are Done . 4-6

Sample Driver Mask . 4-7
Create Initial Block Mask . 4-7
Configure Parameters and Dialog Box Pane 4-7
Configure Initialization Pane . 4-9
Configure Documentation Pane . 4-10
Create Initialization Callback . 4-10

Interrupt Support
5

Use Interrupts in Simulink Real-Time 5-2

Add Interrupt Support . 5-5
Introduction . 5-5
Guidelines for Creating Interrupt Functions 5-7
Filling In the Driver board Structure 5-8

vi Contents

Interrupt Hook Functions
6

Custom Simulink Real-Time Driver Notes
7

S-Function Guidelines . 7-2
mdlStart and mdlTerminate Considerations 7-3
DMA Considerations . 7-4

Accessing Registers . 7-5
I/O Space . 7-5
Memory-Mapped Space . 7-5

Using the Simulink Real-Time Driver Authoring
Tool

8
Driver Authoring Tool Basics . 8-2

Generating Custom Driver Templates 8-4
Set Up Driver Variables . 8-4
Save the Configuration . 8-6
Reload the Configuration . 8-7
Creating the C File Template . 8-7
Create a C MEX File for the Driver 8-7
Customize the Device Driver Mask . 8-8

vii

I/O Structures — Alphabetical List
9

I/O Functions — Alphabetical List
10

viii Contents

1

Customizing Simulink Real-Time
Drivers

• “Custom Simulink Real-Time Drivers” on page 1-2
• “Before You Start” on page 1-8
• “Creating a Custom Driver” on page 1-11
• “Preparations for Debugging” on page 1-15

1 Customizing Simulink Real-Time Drivers

Custom Simulink Real-Time Drivers

In this section...

“Simulink Real-Time Drivers” on page 1-2
“When to Write Your Own Drivers” on page 1-2
“Restrictions on Customizing Simulink Real-Time Drivers” on page 1-3
“Expected Background” on page 1-3
“Resources for Customizing Simulink Real-Time Drivers” on page 1-4
“What Makes Up a Simulink Real-Time Driver?” on page 1-6

Simulink Real-Time Drivers

The Simulink Real-Time software provides device drivers for various third-party boards.
Simulink Real-Time models access these drivers as Simulink blocks from the Simulink
Real-Time library (slrtlib). If you have a board for which the Simulink Real-Time
software does not supply a driver, you can write your own. This topic provides guidelines
for writing custom Simulink Real-Time device drivers.

The Simulink Real-Time driver library contains drivers that support third-party boards
with many I/O capabilities, including:
Analog-to-digital
Digital-to-analog
Audio
Counters
Shared memory

There are also drivers that support particular protocols, including:
RS-232, RS-422, RS-485
GPIB
CAN
UDP
ARINC 429
MIL-1553

When to Write Your Own Drivers

Consider writing your own device drivers for the Simulink Real-Time block library if:

1-2

 Custom Simulink Real-Time Drivers

• No Simulink Real-Time driver exists for your I/O needs.
• You cannot use a board that the Simulink Real-Time software supports.
• You require extended functionality from an existing Simulink Real-Time driver.
• The MathWorks® Simulink Real-Time team does not write a device driver for your

board.

Restrictions on Customizing Simulink Real-Time Drivers

The Simulink Real-Time software has its own kernel, and you write device drivers aimed
at that kernel. A Simulink Real-Time driver is therefore different from a driver for
another environment, such as Microsoft® Windows®. The Simulink Real-Time kernel
is optimized and small, and does not have the operating system layers that traditional
kernels do.

The Simulink Real-Time software installs its own kernel on the target computer. This
kernel runs to the exclusion of any other operating system. When writing your own
driver:

• You cannot use a driver DLL that accompanies the I/O board from the manufacturer.
A manufacturer-supplied DLL has external dependencies that the Simulink Real-
Time kernel cannot resolve. The Simulink Real-Time executable cannot load the DLL.

• Do not create your own driver DLL.
• If you do not have access to the register programming information, you cannot write

a device driver for the board, and neither can MathWorks. If you have access to the
source code of an existing driver for the board, you can try to adapt it to the Simulink
Real-Time kernel.

Expected Background

This topic assumes that you are already knowledgeable about writing device drivers.
It describes the steps specific to writing device drivers for the Simulink Real-Time
environment. To write your own device drivers for the Simulink Real-Time system, you
need the following background:

• Good C programming skills.
• Knowledge of the Simulink simulation algorithm, for example, the type and order of

calls.

1-3

1 Customizing Simulink Real-Time Drivers

• Knowledge of writing S-functions and compiling those functions as C-MEX functions,
including a comprehensive knowledge of Simulink callback methods.

• Knowledge of SimStruct, a Simulink C language header file that defines the
Simulink data structure and the SimStruct access macros. It encapsulates the data
required by the model or S-function, including block parameters and outputs.

• Knowledge of Simulink Coder™.
• Understanding of I/O register programming. Because of the real-time nature of the

Simulink Real-Time software, your drivers must operate with minimal latency.
Therefore, learn how to control an I/O module at the lowest possible level using
register information.

• Knowledge of port and memory I/O access over various buses. You need this
information to access I/O modules at the register level.

• Knowledge of computer system fundamentals and internals.
• An excellent understanding of the particular I/O board, with access to the register-

level programming manual for the device.

Resources for Customizing Simulink Real-Time Drivers

This section lists the resources that are available to you from MathWorks.

References

The following MathWorks documentation provides information that you can refer to
when customizing Simulink Real-Time drivers:

See... For...

“Getting Started with
Simulink” (Simulink)

Overall description of the Simulink environment and how the Simulink
software performs simulations.

“Block Creation”
(Simulink)

Description of how to create custom Simulink blocks.

“Introducing MEX Files”
(MATLAB)

How to write MATLAB® MEX-files.

“Getting Started with
Simulink Coder”
(Simulink Coder)

Overall description of Simulink Coder fundamentals, and guidelines on
understanding I/O boards and low-level programming for drivers for
those boards.

1-4

 Custom Simulink Real-Time Drivers

MathWorks Consulting

You can alternatively contact the MathWorks Consulting Services Group about the fee-
based creation of a driver for your board.

Source Code

You can examine the source code for existing Simulink Real-Time device drivers as a
reference for your custom drivers. Refer to the following folder:

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks

In this folder, some drivers use outdated Simulink Real-Time driver functions. For the
current functions to use, see “Simulink Real-Time Exported Functions” on page 1-5.

Simulink Real-Time Exported Functions

The Simulink Real-Time software provides kernel functions that you can use when
writing your device drivers. These functions enable you to input and output data,
configure PCI devices, and specify timeout intervals. Use only the functions documented
in this topic. The guidelines in this document are applicable only for Simulink Real-Time
software versions later than Simulink Real-Time software version 3.2 (R2007a).

The exported functions are:

• xpcAllocPhysicalMemory

• xpcBusyWait

• xpcFreePhysicalMemory

• xpcGetElapsedTime

• xpcGetPCIDeviceInfo

• xpcInpB

• xpcInpW

• xpcInpDW

• xpcIsModelInit

• xpcOutpB

• xpcOutpW

• xpcOutpDW

1-5

1 Customizing Simulink Real-Time Drivers

• xpcReserveMemoryRegion

• xpcShowPCIDeviceInfo

• xpcSubtractTime

Third-Party Folder

The Simulink Real-Time software provides the following folder to help you integrate your
custom driver.

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\thirdpartydrivers

This folder provides template files that you copy and customize for your drivers. Place all
files that support your drivers in this folder.

What Makes Up a Simulink Real-Time Driver?

A Simulink Real-Time device driver is an S-function with functions that access an I/O
board.

Like any device driver, a Simulink Real-Time driver interfaces between the user and an
I/O device. Unlike typical device drivers, Simulink Real-Time device drivers:

• Can have driver code, that is C code written as an S-function using exported Simulink
Real-Time kernel functions (see “Simulink Real-Time Exported Functions” on page
1-5).

• Can have an optional Simulink block interface (Simulink mask) that users use to
configure the device and access output.

• Can have optional MATLAB code that you can write to perform operations such
as cross-block checking or parameter value range checking. You reference this file
through the Simulink mask.

• Can be included in a Simulink library.
• Can be configured like other Simulink blocks.

1-6

 Custom Simulink Real-Time Drivers

Anatomy of a Simulink Real-Time Driver

1-7

1 Customizing Simulink Real-Time Drivers

Before You Start

In this section...

“Introduction” on page 1-8
“Driver Types” on page 1-9
“Bus Types and I/O Access” on page 1-9
“Register Access” on page 1-10
“Inlining Simulink Real-Time Drivers” on page 1-10

Introduction

This topic assumes that you satisfy the requirements outlined earlier in “Expected
Background” on page 1-3 and that you have reviewed the following sections to prepare:

• “References” on page 1-4
• “Source Code” on page 1-5
• “Simulink Real-Time Exported Functions” on page 1-5
• “Third-Party Folder” on page 1-6

It also assumes that you already have a board for which you want to write a driver.
Before you start, use the following checklist to specify the driver you want to write:

• Determine the functions of your board that you want to access with your driver.
• Determine the bus type for the board.

• PCI
• ISA

• Select the I/O access mapping type.

• I/O port mapped
• Memory address mapped

• Select polling versus interrupt.
• Specify the blocks for the drivers. Identify

• Input and output ports
• Mask parameters

1-8

 Before You Start

• Work variables to be shared between driver start, output, and terminate routines
• Determine your timing considerations.
• Decide whether you use inlined functions.

If yes, see the Target Language Compiler documentation of the Simulink Coder.

Driver Types

• Standard I/O
• Communication
• DMA
• Interrupt-driven

Bus Types and I/O Access

The Simulink Real-Time software supports two standard bus types: ISA and PCI.

A driver performs I/O accesses through either I/O ports or memory addresses (memory
mapped) in a manner defined by the bus type.

ISA Bus

The ISA bus is a 16-bit bus with an 8-MHz clock. Another form of ISA bus is the PC/104.
The driver performs I/O accesses as follows:

• I/O ports — Use board switches or jumpers to select I/O port addresses and memory-
mapped regions.

• Memory addresses — Use only memory addresses between 0xA0000 and 0xFFFFF.

PCI Bus

The PCI bus is a 32-bit or 64-bit bus with a 33- MHz or 66-MHz clock. Another form of
PCI bus is the PC/104+ (PC/104-Plus). The driver performs I/O accesses as follows:

• I/O ports — Use the BIOS to determine the I/O port address during PCI PNP (Plug
and Play) configuration.

• Memory addresses — Use the upper memory address space, typically greater than 2
GB.

1-9

1 Customizing Simulink Real-Time Drivers

Register Access

A device board supports either I/O port or memory-mapped access to onboard registers.
See the register programming documentation from the board manufacturer.

Inlining Simulink Real-Time Drivers

You can choose to inline or not inline Simulink Real-Time drivers. Note the distinction
between Simulink and Simulink Coder conditional compilation. If you implement a
device driver as an inlined S-function, the driver can coexist with Simulink Real-Time
device drivers.

Inlining drivers allows you to customize code generated from Simulink Coder. If you
choose to create inlined drivers, you must use the Simulink Coder Target Language
Compiler.

Note: For convenience, you can create a noninlined version of the driver first, and create
an inlined driver for the Target Language Compiler from the first driver.

1-10

 Creating a Custom Driver

Creating a Custom Driver
The following is a generic procedure for creating a custom device driver. See “Driver
Authoring Tool Basics” on page 8-2 for a description of a tool that helps you create a
simple custom driver that does not use DMA or interrupt handling.

You need administrative or write privileges to add a custom device driver to the Simulink
Real-Time system. Otherwise, see “Block Creation” (Simulink). This topic describes how
to add custom blocks to a library.

1 Write your driver in C using the approved I/O functions. An example device driver
for the CEI-530 board is available at:
matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\arx30init.c

Use the preprocessor directive #ifndef MATLAB_MEX_FILE to comment out code
intended to run only on the target computer. For guidelines on writing the driver S-
function, see S-Function Guidelines on page 7-2.

2 As you write your device driver, compile and link the driver into a MEX-file for
testing. For example:

mex driver.c

This step creates the MEX-file executable, driver.mexw64.

A MEX-file is used for simulation on the development computer and to set data
structure sizes during code generation. It is not used during execution on the target
computer.

3 To supplement the main C driver and support the block mask, create a file of
MATLAB code. For an example of this file, see
matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\marx30init.m

4 Open the Simulink Library Browser and create a library, for example,
your_company_namelib (see “Create a Custom Library” (Simulink)). Use a unique
library name to prevent conflicts with other libraries.

5 In the new library, create an S-function block by dragging it from the Simulink
Library Browser.

6 To configure the S-Function block, in the new library, right-click the S-Function
block and select Block Parameters (S-function).

7 In S-function name, enter the name, without extension, of the driver. For example,
arx30init, the name of the example driver.

1-11

1 Customizing Simulink Real-Time Drivers

8 In S-function parameters, enter the parameters you defined for the driver. The
parameter names you enter here must match the names you enter through the
Parameters & Dialog and Initialization panes of the Mask Editor dialog box. For
example, enter configuration, firstChan, numChans, range, sampleTime, and
baseDec.

9 Leave S-function modules set to the default value, unless separating your driver C
file into multiple files is a requirement. If so, see “Specify Additional Source Files for
an S-Function” (Simulink Coder).

10 Double-click the S-Function block and create a block mask (see “Driver Mask
Guidelines” on page 4-3).

11 Save and close the S-Function block.
12 At the bottom of the S-Function block, enter a block name. For example, MM-32.
13 Save and close the library.
14 To make your new library visible in the Simulink Library Browser, move it to

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\thirdpartydrivers

15 Copy and paste sample_xpcblocks.m in:

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\thirdpartydrivers

Rename this file your_company_namelib_xpcblocks.m and edit this file as
follows:

• Set out.Library to your new library.

out.Library = 'your_company_namelib';

• Set out.Name to a character vector, such as the library name.

out.Name = 'your_company_namelib Blockset';

This character vector appears in the Simulink Library Browser.
• Set out.IsFlat to 0.

out.IsFlat = 0;

Create a function that calls the out structure.
16 (Optional for PCI boards) To enable the SimulinkRealTime.Target.getPCIInfo

function access your new board, copy sample_supported.m to a unique file name.
For example:

1-12

 Creating a Custom Driver

your_company_namelib_supported.m

Edit your copy of the file. For each board for which you add a device driver:

a Copy one of the commented structures in the file.
b Remove the comment symbols (%).
c Starting with 1, update the ID number.

Tip: Number the device structures sequentially, starting with 1.

d Replace the field entries with your equivalents, for example:

boards(1).VendorID = '18f7';

boards(1).DeviceID = '0004';

boards(1).SubVendorID = '-1';

boards(1).SubDeviceID = '-1';

boards(1).DeviceName = '422/2-PCI-335';

boards(1).VendorName = 'Commtech';

boards(1).DeviceType = 'Serial Ports';

boards(1).ADChan = '0';

boards(1).DAChan = '0';

boards(1).DIOChan = '0';

boards(1).Release = 'R2007a';

boards(1).Notes = 'Support any baud rate from 1 bps

 to 6.25 Mbps';

e Save and close the file.
f To confirm your entries, in the Command Window, type:

tg = slrt;

getPCIInfo(tg, 'all')

17 Place all your driver files, including the include files, in the folder:

matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\thirdpartydrivers

To prevent conflicts with the driver files for Simulink Real-Time blocks and third-
party drivers, give all driver files unique names.

18 To update the folders that you added, at the MATLAB Command Window, type

rehash toolbox

1-13

1 Customizing Simulink Real-Time Drivers

When you are done, your library appears in the Simulink Library Browser with
Simulink Real-Time: added to the beginning of the library name.

Simulink Real-Time: your_company_namelib Blockset

See Also
SimulinkRealTime.Target.getPCIInfo

More About
• “Block Creation” (Simulink)
• “Create a Custom Library” (Simulink)
• “Specify Additional Source Files for an S-Function” (Simulink Coder)
• “Driver Authoring Tool Basics” on page 8-2
• S-Function Guidelines on page 7-2
• “Driver Mask Guidelines” on page 4-3

1-14

 Preparations for Debugging

Preparations for Debugging

While developing your custom driver, you can use printf statements in your code.
This displays output in the output area of the target computer monitor. If your printf
statements scroll off the monitor, consider booting the target computer in “Text” mode.
This mode disables graphics on the target computer display and removes the entire scope
area to provide more display area for printf statements.

1 At the MATLAB Command Window, type slrtexplr to start Simulink Real-Time
Explorer.

2 In the Targets pane, expand MATLAB Session and expand the target computer.
3 Click Properties or click the Properties button in the toolbar.
4 Click Target settings and clear the Graphics mode check box.
5 Recreate the target boot disk and restart the target computer.

The scope area on the target computer monitor does not appear.

Tip: Target scopes are automatically converted to host scopes, including target scopes
dynamically added during execution.

6 Continue with device driver development.

1-15

2

PCI Drivers

2 PCI Drivers

PCI Bus Drivers

In this section...

“Introduction” on page 2-2
“PCI Configuration Space API” on page 2-3
“Memory-Mapped Accesses” on page 2-5
“I/O Port Accesses” on page 2-5
“Sample PCI Device Driver” on page 2-6

Introduction

When writing Simulink Real-Time drivers for PCI devices, consider the memory access
method. A PCI device can be either I/O port mapped or memory mapped.

• I/O port mapped — The BIOS assigns a port range.
• Memory mapped — The BIOS assigns a memory region.

The target computer BIOS automatically assigns a conflict-free set of resources to the
PCI devices found in the system when the system starts. You typically do not know
where the board resides (base address) before driver initialization. However, you can
obtain this information by querying the PCI configuration space at run time with
functions that the Simulink Real-Time software provides.

To locate a PCI device, you need the following:

• Vendor and device ID
• Slot number or bus and slot number
• Optionally, subsystem vendor and subsystem device ID (if the vendor and device ID

do not uniquely identify the board).

You can have the drivers locate PCI devices in one of the following ways:

• If the system has one board of a given type, set the driver slot option to -1. With this
setting, the driver searches for the first board that matches a vendor and device ID.

• If the system contains multiple boards of the same type, setting the slot option to
-1 does not find the additional boards. In that case, specify the bus and slot numbers
with the vendor and device IDs.

2-2

 PCI Bus Drivers

PCI Configuration Space API

To access a PCI device, locate the board in target computer memory. To locate the board,
access the configuration space. This space contains relevant board information, such as
the base address and the access type (I/O port or memory mapped). You can access this
space with functions that the Simulink Real-Time software provides.

• Vendor and device ID — The driver searches the boards for the specified vendor
(manufacturer) and device ID. The PCI Steering Committee, an independent
standards body, assigns a unique vendor ID (uint16) to each PCI board vendor. Each
vendor then assigns a unique ID to each PCI board type it supports.

Note: Vendor and device IDs do not uniquely identify a board. For example, boards
that use the PLX-9080 bus interface chip have a vendor ID of 10B5 (the vendor ID
assigned to PLX Technology, Inc.). The device ID for the chip is 9080. To select a
particular board that contains this chip, use a subvendor and subdevice ID in addition
to the vendor and device IDs.

• Slot number or bus and slot number — The driver looks only for the board that
matches the specified vendor and device ID and slot number.

PCI Device Information

Use the xpcGetPCIDeviceInfo function to get information for a PCI device in your
system. The syntax for this function is:

int xpcGetPCIDeviceInfo (uint16_T vendorId, uint16_T deviceId,

uint16_T subVendorId, uint16_T subDeviceId, uint16_T bus, uint16_T

slot, xpcPCIDevice *pciInfo);

This function returns the xpcPCIDevice structure filled according to the following:

If You Supply... This Function....

All four parameters Looks for a device that matches all four parameters and returns
the xpcPCIDevice structure for that device. Use this form if
your system has multiple boards from the same vendor with the
same ID and you want to specify the exact device.

XPC_NO_SUB for
the subVendorId

Does not consider the subvendor or subdevice ID when
looking for a match for the specified device. It returns the
xpcPCIDevice structure for a device that matches the other

2-3

2 PCI Drivers

If You Supply... This Function....
or subDeviceId
parameter

parameters. You can use this form if you do not plan to use the
subVendorId or subDeviceId values.

XPC_NO_BUS_SLOT for
the slot for the device

Returns the first PCI device it finds that matches the remaining
parameters. You can use this form if you know that your system
has only one board with a particular ID set.

Passing Slot Information from Block Mask to Driver

Simulink Real-Time drivers use the following convention to fill in slot parameters and
retrieve slot information. Choose the convention that works best for you.

Set... To...

Set slot = -1 To find the first instance of the board, assume bus = 0 and
call the xpcGetPCIDeviceInfo function.

Set slot = S To find the specified board, assume bus = 0 and call the
xpcGetPCIDeviceInfo function. If the board matches the
IDs, return the PCI information to the driver. Otherwise,
return an error.

Set slot = [B, S] Check bus B and slot S for the specified board. If the board
matches the IDs, return the PCI information to the driver.
Otherwise, return an error.

Setting slot = [0, S] is identical to slot = S.

The following example shows how to use xpcGetPCIDeviceInfo to program the driver
to accept slot number input or slot and bus number input from the driver block.

1 Call this function from the mdlStart callback function.
2 Pass the slot number or slot and bus number into the xpcGetPCIDeviceInfo

function using code like the following:
uint16_T vendorId, deviceId;

int32_T bus, slot, subvendor, subdevice;

xpcPCIDevice pciInfo;

/* S_PCI_SLOT_ARG is passed in from the mask */

/* Typically the slot arg is a scalar containing -1 if the target

has only one board of this type */

/* If the target has multiple boards of this typem, the slot arg

is a vector containing bus and slot info */

/* This code snipped parses the slot arg into bus and slot */

if ((int_T)(mxGetN(ssGetSFcnParam(S, S_PCI_SLOT_ARG))) == 1) {

2-4

 PCI Bus Drivers

 bus = 0;

 slot = (int32_T)(mxGetPr(ssGetSFcnParam(S, S_PCI_SLOT_ARG))[0]);

} else {

 bus = (int32_T)(mxGetPr(ssGetSFcnParam(S, S_PCI_SLOT_ARG))[0]);

 slot = (int32_T)(mxGetPr(ssGetSFcnParam(S, S_PCI_SLOT_ARG))[1]);

}

vendorId = (uint16_T)0x1234;

deviceId = (uint16_T)0x9876;

subvendor = (uint16_T)0x5678;

subdevice = (uint16_T)0x8765;

/* Set subvendor and subdevice to XPC_NO_SUB, XPC_NO_SUB if they are not required */

/* xpcGetPCIDeviceInfo() populates the pciInfo struct */

if (xpcGetPCIDeviceInfo(vendorId, deviceId,

 subvendor, subdevice,

 bus, slot,

 &pciInfo)) {

 sprintf(msg, "Board 0x%x not found at bus %d slot %d", deviceId, bus, slot);

 ssSetErrorStatus(S, msg);

 return;

}

For detailed information on the xpcPCIDevice structure, see xpcPCIDevice.

Memory-Mapped Accesses

A memory-mapped PCI board uses up to six memory regions to access board regions and
memory. Each region can have a different length. Call the xpcReserveMemoryRegion
function for each PCI memory region you want to access. Use the returned virtual
address to access the region. Failure to use the virtual address can cause a segmentation
fault.

To access a memory mapped location, do the following:

1 Declare a variable of the required pointer type to hold the memory location. For
example:

volatile uint32 *csr; /* Control and status register */

Note: Use the volatile keyword here; otherwise, the compiler can optimize away
accesses to this location.

2 Set the pointer value (address) to the physical address at which the register resides.

I/O Port Accesses

To access I/O ports, use the following functions:

2-5

2 PCI Drivers

• xpcInpB, xpcInpW, xpcInpDW — I/O port input functions for byte, word, and double
word accesses

• xpcOutpB, xpcOutpW, xpcOutpDW — I/O port output functions for byte, word, and
double word accesses

Sample PCI Device Driver

To access example PCI device driver code, type:
cd(fullfile(matlabroot,'toolbox','rtw','targets','xpc','target','build','xpcblocks'));

This folder contains driver code for boards supported by Simulink Real-Time.

Note: To specify the S-function name for an S-Function block, enter the C file name
without the extension.

2-6

3

ISA and PC/104 Drivers

3 ISA and PC/104 Drivers

ISA and PC/104 Bus Drivers
In this section...

“Introduction” on page 3-2
“I/O Mapped” on page 3-2
“Memory Mapped” on page 3-2

Introduction

When writing Simulink Real-Time drivers for ISA and PC/104 devices, consider the
memory access method. A PCI device can be either port mapped or memory mapped.
Most ISA and PC/104 boards are port mapped. Devices that are memory mapped
typically need large register banks or are interfaced via dual-port memory.

Note: The Simulink Real-Time kernel does not support ISA and PC/104 PNP boards.
Therefore, you can write Simulink Real-Time device drivers only for ISA and PC/104
boards for which you can set the base address manually. To set the base address
manually, insert jumpers or move DIP switches on the board.

• Port mapped

The base port address on the board is set via jumpers or switches. Reset these
addresses as required to resolve conflicts.

• Memory mapped

The I/O and memory on the board are set via jumpers or switches. Reset these
addresses as required to resolve conflicts.

I/O Mapped

The base port address on the board is set via jumpers or switches. Drivers cannot
discover these addresses on their own; you must specify these addresses to the driver.

Memory Mapped

The I/O and memory on the board is set via jumpers or switches. Drivers cannot discover
these addresses on their own; you must specify these addresses to the driver.

3-2

 ISA and PC/104 Bus Drivers

Reserved Space on the Target Computer

The Simulink Real-Time kernel reserves space in the region (C0000 to DC000) for
memory-mapped I/O cards. Set up ISA and PC/104 cards to use addresses in this range.

3-3

4

Masking Drivers

• “Creating Driver Subsystem Masks” on page 4-2
• “Driver Mask Guidelines” on page 4-3
• “Cross-Block Checking” on page 4-5
• “When You Are Done” on page 4-6
• “Sample Driver Mask” on page 4-7

4 Masking Drivers

Creating Driver Subsystem Masks

This topic describes guidelines for creating a Simulink block user interface (mask) for
the S-Function block associated with your driver. A mask defines the menu items that
are passed to the S-function. The mask can call a MATLAB file to do parameter or range
value checking. You can also modify the labels of a block to show port numbers or other
information. After you create the C code for a Simulink Real-Time device driver:

1 Create an optional MATLAB file.
2 Create an S-Function block for the driver.
3 Create a Simulink mask for the S-Function block.
4 Define parameters and descriptions as required by the block.

When you are done, you can make the device driver and its mask available for users to
add to their models.

4-2

 Driver Mask Guidelines

Driver Mask Guidelines

This topic lists guidelines for creating a mask for your Simulink Real-Time driver. See
“Block Masks” (Simulink).

When you create a model, you access the masked block to interact with the driver, which
in turn interacts with the device.

• Create an S-Function block for the driver.
• From the set of parameters that you programmed into the driver C code, decide on the

set of parameters to include in the mask.
• Select descriptive names for these parameters.

For ease of use, choose parameter names that are as close as possible to the names
that are used by Simulink Real-Time drivers.

• For each parameter, decide if the parameter can accept a finite number of possible
input values. If yes, consider using one of the following widgets:

• Check box — For yes/no or 1/0 inputs
• Drop-down list — For a finite list of choices

Your mask can also be dynamic, where the dialog box changes according to user
selections.

• Choose descriptive variable names.
• Configure the library block so that the block mask modifies its content according to

user input. For example, a check box can cause a parameter to become visible.
• To improve readability, terminate the title beneath the driver block with a blank

space. If a model contains more than one block of a given type, Simulink appends a
number to the title under the block.

• Name the block so that it indicates the purpose of the driver.
• If you want to link help information to the mask Help button, see “Create a Simple

Mask” (Simulink).
• From within the mask, you can call a custom file to perform various operations, such

as:

• Range checking for all parameters. For example, if you expect input values from 1
to 10, check for negative values and for values greater than 10.

4-3

4 Masking Drivers

• Cross-block checking (see “Cross-Block Checking” on page 4-5).

More About
• “Create a Simple Mask” (Simulink)
• “Block Masks” (Simulink)

4-4

 Cross-Block Checking

Cross-Block Checking

Cross-block checking determines if multiple blocks are trying to access the same I/O
module. To prevent such conflicts, include cross-block checking in your driver. You can
perform cross-block checking by calling find_system from the block mask in various
ways. Use the following guidelines when performing cross-block checking:

• Call the find_system function from the block InitFcn callback function, which
is defined in the Block Parameters dialog box of the block. There are two phases
of MATLAB file execution during an update system operation. If you call the
find_system function from a block InitFcn callback function, no additional updates
are triggered.

• Decide on the level of cross-block checking for your I/O configuration. For example,
assume that your board uses the 8255 chip for digital I/O. This chip contains
three groups of 8 bits. You can configure each group for input or output. A call to
find_system can detect that two blocks are using the same group of 8 bits, one block
for input and one block for output. InitFcn can then generate an error. See
matlabroot\toolbox\rtw\targets\xpc\target\build\xpcblocks\mpci8255.m

which is called as mpci8255(1) for the Measurement Computing™ PCI-DAS 1200
digital input and output blocks. During an update diagram sequence, Simulink calls
the InitFcn callback function once for each block. Simulink can call the initialization
commands in the mask multiple times.

4-5

4 Masking Drivers

When You Are Done

After you write the driver S-function and create the S-Function block, optional block
mask, and MATLAB file for it, be sure to:

1 Check the text of each error message for clarity and spelling.
2 (Optional) Use a coding standard indentation such as four or eight spaces without

tabs.
3 Copy your new blocks into a custom folder with a unique name.

To enable your new blocks to be viewable in the Simulink Library Browser, see
“Creating a Custom Driver” on page 1-11.

4 Test the driver for the following:

• To build the driver for simulation and code generation, run the mex command on
the driver.

• Check the I/O module behavior under as many conditions as possible.

4-6

 Sample Driver Mask

Sample Driver Mask

This example procedure recreates the block mask for the RCEI-530 Initialize block.

Create Initial Block Mask

To create the initial block mask:

1 Right-click the RCEI-530 Initialize block.
2 Select Mask > Create Mask.

Configure Parameters and Dialog Box Pane

Configure the following user-visible parameters for the RCEI-530 Initialize block.

Variable name Type Prompt Evaluate Tunable

boardId popup Board ID: Yes Yes
wrap checkbox Wrap each

send channel

to the

corresponding

receive

channel:

Yes Yes

timesrc popup Timestamp

source:

Yes Yes

timerCount edit Timer tick

length

(in .25

microsec

units):

Yes Yes

sampleTime edit Sample time: Yes Yes
slot edit PCI slot (-1:

autosearch):

Yes Yes

Configure the Parameters & Dialog pane of the block mask using the following
procedure.

4-7

4 Masking Drivers

1 Select the Parameters & Dialog tab.
2 To enter the parameter for variable boardId, double-click the Popup parameter

button under Parameters.

A groupbox node representing the popup parameter appears. The first time a
parameter is added, groupbox node representing the mask also appears.

3 In the Prompt column, enter Board ID:.
4 In the Name column, enter boardId.
5 Under the Attributes node to the right, check that Evaluate and Tunable are both

selected.
6 To enter the parameter for variable wrap, double-click the Check box parameter

button under Parameters.
7 In the Prompt column, enter Wrap each send channel to the

corresponding receive channel:.
8 In the Name column, enter wrap.
9 Under the Attributes node to the right, check that Evaluate and Tunable are both

selected.
10 Enter parameters for variables timesrc, timerCount, sampleTime, and slot

using the same procedures.

After you are finished, the Mask Editor Parameters & Dialog pane looks like this
figure.

4-8

 Sample Driver Mask

11 To save the mask, click OK.

Configure Initialization Pane

1 Select the Initialization pane. The pane displays the dialog box variables that you
entered in the Parameters & Dialog pane.

2 In the Initialization commands code section, type:

phase = 2;

[baseDec, maskDisplay, maskDescription] =

4-9

4 Masking Drivers

marx30init(phase, configuration, firstChan,

numChans, range, base);

set_param(gcb, 'MaskDisplay', maskDisplay);

where marx30init references the marx30init.m file for the driver.
3 Create the InitFcn callback for the block. A model calls this callback at the start of

model simulation. See “Create Initialization Callback” on page 4-10.
4 To save the mask, click OK.

Configure Documentation Pane

1 Select the Documentation tab. This tab contains three fields, Mask type, Mask
description, and Mask help.

2 In the Mask type field, enter the type of driver. For example:

CEI-x30_Initialize

3 In the Mask description field, enter a description for the driver. For example:

RCEI-530

GE-IP (Condor)

Initialize

4 In the Mask help field, if you are providing online documentation to associate with
the Help button, call that online documentation from this field. See “Create a Simple
Mask” (Simulink).

5 To save the mask, click OK.

You can also enter the mask description in the Initialization code section using a
command such as:

set_param(gcb, 'MaskDescription', maskDescription);

If you enter the mask description in the Initialization section, omit entering it in the
Mask description field.

Create Initialization Callback

After you create the block mask, define an InitFcn callback for the block. A model calls
this callback at the start of model simulation.

1 Right-click the block and select Properties from the drop-down list.

4-10

 Sample Driver Mask

2 Select the Callback tab from the dialog box. From the list, select InitFcn.
3 Enter MATLAB code (usually a function call) that performs initialization-time-only

tasks, such as categorizing I/O ports or doing cross-block error checking.

Initialization-time tasks have special requirements, such as:

• Gathering consistent information about the block inputs and outputs. For example,
when Simulink categorizes digital I/O ports as input or output, both the digital input
and the digital output InitFcn must return the same list. Otherwise, Simulink can
misconfigure the block.

• Doing cross-block error checking using findsystem. Call findsystem only at
InitFcn time. If called at mask initialization time, findsystem could force multiple
reevaluations of the whole model.

For ease in debugging, make a single call to a MATLAB initialization function InitFcn.
InitFcn could be implemented as a separate function, but it is sometimes convenient
to combine InitFcn with a mask initialization function MaskInit (in this case,
marx30init.m).

To combine these functions, write MaskInit to be called at InitFcn call time:

• Save a derived configuration as UserData on the block and retrieve it again during
the mask initialization call itself. The InitFcn call-time code cannot return a value
to the mask.

• Omit passing the mask parameter variables into MaskInit from the InitFcn dialog
box. Mask parameter variables are not defined at InitFcn call time.

• Isolate the InitFcn call-time code from code that uses an omitted mask parameter
value. (If the execution path references an omitted parameter value, MATLAB raises
an error.) Use code such as the following to isolate the InitFcn code:

• Pass a single argument of arbitrary value, then use nargin to determine the
number of parameters:
MaskInit(Arg1, Arg2, Arg3, ..., ArgN)

if (1 == nargin)

 % Initialization code, which must not use Arg2, Arg3, ..., ArgN

else

 % All other processing

end

• Pass a single argument of value 1, then check for that value using a switch on the
first parameter:
MaskInit(Arg1, Arg2, Arg3, ..., ArgN)

4-11

4 Masking Drivers

switch (Arg1)

case 1:

 % Initialization code, which must not use Arg2, Arg3, ..., ArgN

otherwise

 % All other processing

end

• To get mask parameter values, call get_param(gcb, 'paramvariablename') to
get their ASCII value. For example:
function [pciBus, pciSlot, maskDisplay, schans, sbaud, sparity, ...

 rchans, rbaud, rparity] = ...

marx30init(phase, deviceName, timerCount, slot)

 vendorName = 'GE-IP';

 if phase == 1 % InitFcn

 masktype = get_param(gcb,'MaskType');

 initBlocks = find_system(bdroot, ...

 'FollowLinks', 'on', ...

 'LookUnderMasks', 'all', ...

 'RegExp', 'on', ...

 'MaskType', masktype);

 sendBlocks = find_system(bdroot, ...

 'FollowLinks', 'on', ...

 'LookUnderMasks', 'all', ...

 'RegExp', 'on', ...

 'MaskType', [masktype(1:7),'_Send']);

 recvBlocks = find_system(bdroot, ...

 'FollowLinks', 'on', ...

 'LookUnderMasks', 'all', ...

 'RegExp', 'on', ...

 'MaskType', [masktype(1:7),'_Receive$']);

.

.

.

• Check the range values of the parameters in this file. Checking the mask here catches
illegal values early in the build process.

This example returns a character vector to display on the block with the variable
port_label commands with which to label the input and output ports. The number and
content of the port_label commands depend on the channel vector that you enter in
the mask.

More About
• “Create a Simple Mask” (Simulink)

4-12

5

Interrupt Support

• “Use Interrupts in Simulink Real-Time” on page 5-2
• “Add Interrupt Support” on page 5-5

5 Interrupt Support

Use Interrupts in Simulink Real-Time

If your device supports interrupts, you can use these procedures to add your custom
interrupt functions to the Simulink Real-Time framework.

You can use interrupts in real-time applications in one of the following ways:

• Use an Async IRQ Source block to execute a function-call subsystem when an
interrupt occurs.

• Use the interrupt to run the model in place of the timer interrupt, available through
the model Configuration Parameters dialog box in the Code Generation > Simulink
Real-Time Options pane.

Note: Although you can use interrupts in two ways, you program for these interrupts
using the same procedure. See “Add Interrupt Support” on page 5-5.

When a model executes, it executes in the following order:

1 Call all mdlStart routines in block execution order.
2 Call the interrupt Start function, if one exists.
3 Allow background graphics and network tasks to run until an interrupt occurs.

5-2

 Use Interrupts in Simulink Real-Time

5-3

5 Interrupt Support

When a device interrupt occurs, the generated code uses the following steps for each
device on this IRQ to determine which device generated the interrupt:

1 Call the PreHook function, if one exists. The return value determines the action.
2 The generated code determines whether this device generated the interrupt.

• If the PreHook function returns XPC_RUN_ISR, execution continues to step 3.
• If the PreHook function returns XPC_DROP_ISR, the generated code goes to step

5.
3 The generated code determines whether the Async IRQ Source block has a function-

call subsystem connected.

• If so, the generated code calls the interrupt service function-call subsystem. When
the interrupt service function subsystem returns, the generated code goes to step
4.

• If this board is configured to run the model, and this board did interrupt, send
a wake-up call to the model thread. The model thread does not immediately
execute. It waits until after the boards that use this IRQ have been checked and
the return from the interrupt has been executed.

4 Call the PostHook function, if one exists. If one does not exist, the generated code
goes to step 5.

5 The generated code checks whether another device using the same IRQ exists in the
system.

If so, execution returns to the beginning of step 1.

Otherwise, generated code goes to step 6.
6 Returns from the interrupt.

The Simulink Real-Time kernel now runs the highest priority thread. If a wake-up call
was sent to the model, the highest priority ready thread is the model.

5-4

 Add Interrupt Support

Add Interrupt Support
In this section...

“Introduction” on page 5-5
“Guidelines for Creating Interrupt Functions” on page 5-7
“Filling In the Driver board Structure” on page 5-8

Introduction

To add interrupt handling for a custom driver, you must create

• A descriptor file to connect a board type to the functions to start, handle, and stop
interrupts

• A C file to implement these functions

Include the following functions.

Function Description

PreHook Runs just before either a function-call subsystem or entire
model is called. Program this function to acknowledge the
interrupt and cause the board to stop issuing the interrupt
signal.

PostHook Runs after return from function call on interrupt, and before
model execution. It is typically not used.

Start Runs as the last item when starting a model, just before
the model runs. It is typically used to turn on interrupt
generation. Program this function to enable interrupts on
the board and start any action.

Stop Runs at the beginning of a stop request, before any
mdlTerminate entries for any block in the model run. It
is typically used to turn off interrupt generation. Program
this function to disable interrupts from the board and stop
any action. Stop is the first action called when a real-time
application stops executing.

Note: If you turned on interrupts in the Start function, turn them off in the Stop
function. In this way, the stop and start functions cancel each other.

5-5

5 Interrupt Support

To add interrupts for your custom driver, use the following general steps:

1 Create a hook file in the following folder:

matlabroot\toolbox\rtw\targets\xpc\target\build\

xpcblocks\thirdpartydrivers

Hook files are C files (.c). For example, look at files in matlabroot\toolbox\rtw
\targets\xpc\target\build\src, such as xpc6804hooks.c.

2 Name the hook file something like:

your_company_name_board_hook.c

3 In the hook file, create the interrupt functions PreHook, PostHook, Start, and
Stop. See “Guidelines for Creating Interrupt Functions” on page 5-7 for
information on how to create these functions.

4 Copy the file sample_int.m to a unique file name in the following folder:

matlabroot\toolbox\rtw\targets\xpc\target\build\

xpcblocks\thirdpartydrivers

For example:

your_company_name_int.m

The Simulink Real-Time software searches in this folder for file names that end with
_int.m and looks for board interrupt descriptions.

5 Open and edit the following file:

matlabroot\toolbox\rtw\targets\xpc\target\build\

xpcblocks\thirdpartydrivers\your_company_name_int.m

Add to this file a board structure for each Simulink Real-Time supported board
for which interrupt functions have been written. See “Filling In the Driver board
Structure” on page 5-8 for a description of how to fill in a board structure.

6 Save and close the file.
7 At the MATLAB Command Window, type:

rehash toolbox

8 To update the Async IRQ Source block and Configuration Parameters dialog boxes,
restart the MATLAB interface.

5-6

 Add Interrupt Support

Guidelines for Creating Interrupt Functions

Simulink Real-Time interrupt functions have predefined purposes and typically follow a
particular order. This section describes the guidelines on creating interrupt functions.

To prepare for the creation of the hook file, examine the existing Simulink Real-Time
hook files (matlabroot\toolbox\rtw\targets\xpc\target\build\src). Copy
and modify one that is the same board type, PCI or ISA, as the board for which you are
creating a custom driver. For example, xpc6804hooks.c is for an ISA board.

Place your new file in

matlabroot\toolbox\rtw\targets\xpc\target\build\

xpcblocks\thirdpartydrivers\

When modifying an existing hook file:

• Change the names of the functions to match the functions that you have selected for
your board.

• Do not change the function signatures.
• Do not remove the __cdecl character string.
• The PreHook and PostHook functions run with interrupts disabled. Do not change

the interrupt status in these functions.

When writing the interrupt functions, note the following:

• When an interrupt occurs, the kernel calls the PreHook function.

Note: This function is run with interrupts disabled. If this function cannot turn off
the interrupt, an infinite loop occurs because the interrupt service routine (ISR)
continuously calls the PreHook function.

• Because the PostHook function has limited use, you most likely do not need to define
this function. Set this function to 'NULL' if you do not need it.

• The generated code calls the Start function as the last action of model startup, after
the model has called all the mdlStart routines.

This function is typically used to enable interrupts from the board. The real-time
application is ready to accept interrupts a few microseconds after this function is
called. Do not try to enable interrupts from the board mdlStart function.

5-7

5 Interrupt Support

• When a real-time application stops executing, the generated code calls the Stop
function first. Disable interrupts from the board in this function.

Filling In the Driver board Structure

This section describes how to fill in a driver board structure, element by element.

• Depending on the bus type of your board, select a board structure of an existing
board that has the same bus type. The information passed to the functions is slightly
different for an ISA board or a PCI board. You can use this structure as a template for
your own board entry. The following is a structure for an ISA or PC/104 device:

board.name = 'RTD_DM6804';

board.VendorId = -1;

board.DeviceId = 1;

board.SubVendorId = -1;

board.SubDeviceId = -1;

board.PreHookFunction = 'xpc6804';

board.PostHookFunction = 'NULL';

board.HookIncludeFile = 'xpc6804hooks';

board.StartFunction = 'xpc6804start';

board.StopFunction = 'xpc6804stop';

The following is a structure for a PCI device:

board.name = 'General Standards 24DSI12';

board.VendorId = hex2dec('10b5');

board.DeviceId = hex2dec('9080');

board.SubVendorId = hex2dec('10b5');

board.SubDeviceId = hex2dec('3100');

board.PreHookFunction = 'xpcgs24dsi12prehook';

board.PostHookFunction = 'NULL';

board.HookIncludeFile = 'xpcgs24dsi12hooks';

board.StartFunction = 'xpcgs24dsi12start';

board.StopFunction = 'xpcgs24dsi12stop';

• name — Enter a name for the board. The Simulink Real-Time software uses this
name to populate the I/O board generating the interrupt list in the following:

• Async IRQ Source block
• PCI slot (-1: autosearch) or ISA base address parameter in the Simulink

Real-Time Options section of the model Configuration Parameters dialog box

5-8

 Add Interrupt Support

• VendorId, DeviceId, SubVendorId, SubDeviceId — Enter the ID character
vectors for the board. If you have a PCI board, the board manufacturer identifies that
board with either two or four ID values, depending on the specific board. When calling
the hook functions, the Simulink Real-Time kernel obtains the PCI information for
the board and passes it to the hook functions. Use these parameters to help identify
the interrupting board.

• For VendorId and DeviceId, enter the IDs you get from the board manufacturer.
• Many boards do not have SubVendorId and SubDeviceId values. In these cases,

insert the value -1 to prevent The Simulink Real-Time software from checking for
them.

If you have an ISA board, it does not have a vendor or device ID. Instead, the
generated code inserts the ISA base address in the first base address entry of the PCI
structure. To indicate to the kernel that this board is an ISA board, set VendorId to
-1 and DeviceId to 1.

If you do not need hook functions:

• Set VendorId to -1 and DeviceId to -1.
• Set Fnc and PostHookFcn to 'NULL'.
• Set StartFunction and StopFunction to 'NULL'.

The Async IRQ Source block still calls the subsystem when an interrupt occurs.

The following table summarizes your options for this element:

VendorId DeviceId Usage

+ID +ID PCI board
-1 +1 ISA board
-1 -1 Special case: If the driver does not need hook functions.

The driver can still use the Async IRQ Source block. As an
example, see the source code for the serial driver.

• Enter the names of the interrupt functions.

• PreHookFunction

Prototype:

5-9

5 Interrupt Support

int __cdecl your_company_name_boardPreHook(xpcPCIDevice *pciInfo);

• PostHookFunction

Prototype:

void __cdecl your_company_name_boardPostHook(xpcPCIDevice *pciInfo);

• StartFunction

Prototype:

void __cdecl your_company_name_boardStart(xpcPCIDevice *pciInfo);

• StopFunction

Prototype:

void __cdecl your_company_name_boardStop(xpcPCIDevice *pciInfo);

If one of these functions is not used, set the corresponding board structure entry to
'NULL' to prevent calls to that function in that context.

Note: The differences between hook functions for PCI and ISA devices are:

• PCI devices — For a PCI device, the driver must complete the VirtAddress field
of the xpcPCIDevice structure in the Start function before it calls the hook
function. In the Start function, call the xpcReserveMemoryRegion function and
save the resulting virtual address in the VirtAddress field. The remaining fields
of the structure are filled in automatically. A pointer to the same instance of this
structure is passed to all four functions.

• ISA devices — For an ISA device, the base I/O address is entered in the first
physical address of the xpcPCIDevice structure. No other fields in the structure
are filled in. The hook function must complete the structure.

• HookIncludeFile — Interrupt handling file that contains the PreHookFunction,
PostHookFunction, StartFunction, and StopFunction functions for this board.
Specify this name without the .c extension.

• Specify this structure for each board for which interrupt functions have been written.
For example:

board(1).name = 'name1';

.

5-10

 Add Interrupt Support

.

.

board(2).name = 'name2';

5-11

6

Interrupt Hook Functions

6 Interrupt Hook Functions

PostHook
Run after return from interrupt service routine function-call subsystem or after sending
wake-up call to model thread

Syntax
void __cdecl your_company_name_boardPostHook(xpcPCIDevice *pciInfo);

Argument

pciInfo Pointer to the PciDevice structure.

Description

The your_company_name_boardPostHook function is not typically required. If you do
not need this function, set board.PostHookFunction to 'NULL'.

matlabroot\toolbox\rtw\targets\xpc\target\build\

xpcblocks\thirdpartydrivers\your_company_name_board_int.m

See Also

xpcPCIDevice

6-2

 PreHook

PreHook
Run just before the interrupt service routine

Syntax
int __cdecl your_company_name_boardPreHook(xpcPCIDevice *pciInfo);

Argument

pciInfo Pointer to the PciDevice structure.

Description

your_company_name_boardPreHook executes just before the model-level interrupt
service routine (either a function-call subsystem or entire model) is called.

Return

This function must check the status register on the board to determine if the board
caused the interrupt. It returns one of the following:

• XPC_RUN_ISR — If the function determines that the board caused the interrupt, the
function must perform the required operation to stop the board from generating the
interrupt. The function then returns this value.

• XPC_DROP_ISR — If the function determines that the board did not cause the
interrupt, this function returns this value.

See Also

xpcPCIDevice

6-3

6 Interrupt Hook Functions

Start
Run as the last item in mdlStart

Syntax
void __cdecl your_company_name_boardStart(xpcPCIDevice *pciInfo);

Argument

pciInfo Pointer to the PciDevice structure.

Description

your_company_name_boardStart runs as the last item after all of the mdlStart
functions. It is typically used to turn on interrupt generation.

See Also

xpcPCIDevice

6-4

 Stop

Stop
Run at the beginning of mdlTerminate

Syntax
void __cdecl your_company_name_boardStop(xpcPCIDevice *pciInfo);

Argument

pciInfo Pointer to the PciDevice structure.

Description

your_company_name_boardStop executes before the mdlTerminate function of the
blocks in the model. It is typically used to turn off interrupt generation.

See Also

xpcPCIDevice

6-5

7

Custom Simulink Real-Time Driver
Notes

• “S-Function Guidelines” on page 7-2
• “Accessing Registers” on page 7-5

7 Custom Simulink Real-Time Driver Notes

S-Function Guidelines

You implement Simulink Real-Time device driver blocks on the development computer
using Simulink S-functions. An S-function is a set of subroutines that implements a
function. You can write a Simulink Real-Time S-function in C, C++, or Fortran. You
cannot write a Simulink Real-Time S-function in MATLAB code.

Simulink S-functions have several callback methods. For Simulink Real-Time drivers,
you typically write C code for the following callback methods:

Method Description

mdlInitializeSizes Initializes the S-function with the number of inputs, outputs,
states, parameters, and other characteristics.

mdlInitializeSampleTimesInitializes the sample rates of the S-function.
mdlStart Initializes the state vectors of this S-function and initializes the

associated I/O module.
mdlOutputs Computes the signals that this block emits.
mdlTerminate Performs the actions required at termination of the simulation.

After you create the S-function, create a mask for it. See “Driver Mask Guidelines” on
page 4-3.).

Of particular note when writing S-functions:

• Record the input parameters that the driver requires for creating a mask for the
driver.

• Work vectors are not shared between runs. The S-function work variables are cleared
after calling mdlTerminate. Therefore, each time the S-function calls mdlStart, you
must reinitialize the work variables.

• Declare the memory-mapped registers as volatile.
• An S-function is compiled into a MEX-file to run as part of the simulated model

on the development computer. During code generation, the S-function calls the
mdlInitializeSizes and mdlInitializeSampleTimes functions to determine
the data structures that are used on the target. The same C file is also compiled with
your real-time application to run on the target computer. Because of the following
reasons, you must conditionally compile code for the development computer and for
the target computer.

7-2

 S-Function Guidelines

• The development computer runs Windows and the target computer runs the
Simulink Real-Time kernel.

• The development computer does not have the same I/O modules as the target
computer.

The preprocessor symbol MATLAB_MEX_FILE is defined when you compile for
simulation (via mex). Undefine this symbol when compiling for the Simulink Real-
Time environment. For conditional compilation of development computer or target-
computer-specific code, use #ifdef with this symbol. For example:

#ifdef MATLAB_MEX_FILE /* development computer */

 /* simulation code, typically nothing */

#else /* target computer */

 /* code to access I/O board */

endif

If you want the code to run on both the development and target computers, do not
conditionalize the code.

• Include the xpctarget.h file in your S-function.

This file provides definitions for the functions exported by the Simulink Real-Time
kernel. The Simulink Real-Time kernel exports various functions for use in device
drivers.

mdlStart and mdlTerminate Considerations

When you load a real-time application onto a target computer, the driver executes the
mdlStart callback method. If mdlStart completes and the software does not detect an
error, the driver then executes mdlTerminate.

If mdlStart does not complete or the software detects an error, the real-time application
does not execute mdlTerminate. (Typically, mdlStart does not complete if the
application cannot find a referenced I/O board or if the board does not initialize.)

When the real-time application does start, it executes mdlStart again, then repeatedly
executes mdlOutputs. At the end of execution, the application calls the mdlTerminate
function.

With these considerations, write mdlStart and mdlTerminate so that they cancel
each other out. Write mdlTerminate function so that it deallocates the resources that

7-3

7 Custom Simulink Real-Time Driver Notes

were allocated in mdlStart. For example, if you set an output to high in mdlStart,
reset it to the default level in mdlTerminate. (Failure to reset the output causes a high
output before the real-time application starts.) As another example, if, in the mdlStart
function, you allocate memory, have mdlTerminate free the memory.

Although this description distinguishes between the driver initialization and real-time
application start phases, you do not typically differentiate between them. To differentiate
between these phases, use the xpcIsModelInit function. This function returns 1 while
the model is initializing, and 0 otherwise.

DMA Considerations

If your board directly accesses system RAM, such as a DMA controller, you must allocate
that memory using the xpcAllocPhysicalMemory function. This function allocates the
buffer such that the buffer virtual address is the same as its physical address.

More About
• “Passing Parameters to S-Functions” (Simulink)

7-4

 Accessing Registers

Accessing Registers

In this section...

“I/O Space” on page 7-5
“Memory-Mapped Space” on page 7-5

I/O Space

For registers in I/O space, use the Simulink Real-Time I/O read and write functions:

• Data read functions

uint32_T xpcInpDW(uint16_T port); // read a 32 bit word

uint16_T xpcInpW(uint16_T port); // read a 16 bit word

uint8_T xpcInpB(uint16_T port); // read an 8 bit byte

• Write functions

void xpcOutpDW(uint16_T port, uint32_T value); // write 32 bits

void xpcOutpW(uint16_T port, uint16_T value); // write 16 bits

void xpcOutpB(uint8_T port, uint8_T value); // write a byte

The port is the address value returned in the BaseAddress array.

To read a data value from a register, send the I/O space address of the data through the
output (address) port using an xpcOutp* function. Then, read the data from the input
(data) port using an xpcInp* function.

To write a data value into a register, send the I/O space address of the data through the
output (address) port using an xpcOutp* function. Then, write the data through the
input (data) port using an xpcOutp* function.

Memory-Mapped Space

For registers in memory-mapped space, dereference them through a pointer that contains
the virtual address returned by the xpcReserveMemoryRegion function. Because
modern compilers have aggressive optimizers, you must declare the pointer volatile
so the compiler does not optimize out reads and writes using that pointer. The following
pseudocode illustrates this using two methods: structure and array.

• Structure

7-5

7 Custom Simulink Real-Time Driver Notes

struct bdregs {

 volatile int reg1;

 volatile int reg2;

 etc.

};

 struct bdregs *regs = pciInfo.VirtualAddress[1];

 regs->reg1 = 0x1234; // Sets reg1 to that value

 regs->reg2 = 0x56789abc;

 etc.

If your I/O module uses registers with different lengths, use the structure method:
• Array

#define REG1 0

#define REG2 1

etc.

 volatile int *aregs = pciInfo.VirtualAddress[1];

 aregs[REG1] = 0x1234;

 aregs[REG2] = 0x56789abc;

7-6

8

Using the Simulink Real-Time Driver
Authoring Tool

• “Driver Authoring Tool Basics” on page 8-2
• “Generating Custom Driver Templates” on page 8-4

8 Using the Simulink Real-Time Driver Authoring Tool

Driver Authoring Tool Basics

Simulink Real-Time Driver Authoring Tool helps you create templates for simple custom
device drivers. A simple custom device driver is one that does not perform DMA or
interrupt processing. The Simulink Real-Time Driver Authoring Tool is not useful for
these more complicated implementations.

Based on the inputs you provide to Simulink Real-Time Driver Authoring Tool, it can
create several files. Of these files, you typically edit only the source C code file and,
optionally, the block mask file.

File Description

driver_name.c Template for the source C code for driver. Enter your C
code in this file.

driver_name.h Header file for driver.
sfcn_driver_name.c S-function file for driver. This file contains S-function

callback methods and options for the driver.
sfcn_driver_name.tlc Optional. Simulink Coder TLC code generation file.

You typically need a .tlc file only if you want to
inline your custom driver. For more information, see
“Inlining Simulink Real-Time Drivers” on page 1-10.

The tool creates this file for you with default contents.
If you do not intend to inline the driver, leave it
unchanged.

driver_block_name Optional. Block mask model file for driver. After the
Simulink Real-Time Driver Authoring Tool creates
the supporting files, it creates the block mask for the
driver and displays it in Simulink Editor.

The tool creates this file only if you select the MEX C
file check box.

sfcn_driver_name.mexw64 Optional. If you requested the creation of a C MEX file,
the tool generates one for you.

The Simulink Real-Time Driver Authoring Tool creates custom driver templates using
the Legacy Code Tool (LCT). You do not need prior knowledge of the Legacy Code Tool to

8-2

 Driver Authoring Tool Basics

use the Simulink Real-Time Driver Authoring Tool. If you want to read about the Legacy
Code Tool, see “Integrate C Functions Using Legacy Code Tool” (Simulink).

8-3

8 Using the Simulink Real-Time Driver Authoring Tool

Generating Custom Driver Templates

In this section...

“Set Up Driver Variables” on page 8-4
“Save the Configuration” on page 8-6
“Reload the Configuration” on page 8-7
“Creating the C File Template” on page 8-7
“Create a C MEX File for the Driver” on page 8-7
“Customize the Device Driver Mask” on page 8-8

The prerequisites for creating a custom Simulink Real-Time device driver using the
Simulink Real-Time Driver Authoring Tool are the same as for creating a device driver
manually. See “Expected Background” on page 1-3 and “Before You Start” on page 1-8 for
further information.

The following sections assume that you have identified the following component
specifications for the driver. See “Before You Start” on page 1-8 for guidelines for the
following driver components, including their data type and size:
Input ports
Output ports
Parameters
Work variables

Set Up Driver Variables

1 In the Command Window, change folder to the one in which you want to save the
driver code.

2 Start Simulink Real-Time Driver Authoring Tool. Type

slrtdrivertool

The Simulink Real-Time Driver Authoring Tool is displayed.
3 In the Main tab, enter:

• Driver name — The name for your driver. The tool creates supporting files using
this character vector as the prefix. For example, type testdriver.

• Sample time — Select one of the following:

8-4

 Generating Custom Driver Templates

• Mask parameter — If you want to set the block sample time as a block dialog
box parameter (Sample Time).

• Inherited — If you want the block to inherit its sample time from a
connected block. No Sample Time parameter is displayed in the block dialog
box.

4 If you have input ports for the block, click the Input Ports tab.

The Inport Ports tab is displayed.
5 Click the Add button. Enter your input port information in the following fields.

Repeat for the rest of your input ports.

• Variable — Enter the name of the input. For example, speed.
• Size — Enter the maximum size number of storage locations to be allocated for

the parameter. If you want this number to be a variable one, enter a value of 0.
This setting allows you to pass an additional function argument that contains the
size into the start, output, and terminate functions.

• Type — From the list, select the data type for the input port.
• Output — Always selected. Passes the input port value into the S-function

mdlOutputs callback method.
6 If you have output ports for the block, click the Output Ports tab.

The Output Ports tab is displayed.
7 Click the Add button. Enter your output port information in the following fields.

Repeat for the rest of your output ports.

• Variable — Enter the name of the output. For example, speed.
• Size — Enter the maximum size number of storage locations to be allocated for

the size.
• Type — From the list, select the data type for the output port.
• Output — Always selected. Passes the output port value into the S-function

mdlOutputs callback method.
8 If you have parameters for the block, click the Parameters tab.

The Parameters tab is displayed.
9 Click the Add button. Enter your parameter information in the following fields.

Repeat for the rest of your parameters.

8-5

8 Using the Simulink Real-Time Driver Authoring Tool

• Variable — Enter the name of the parameter. For example, speed.
• Type — From the list, select the data type for the parameter.
• Size — Enter the maximum size number of storage locations to be allocated for

the parameter. If you want this number to be a variable one, enter a value of 0.
This setting allows you to pass an additional function argument that contains the
size into the start, output, and terminate functions.

• Start — Select the check box if you want the parameter value to be passed into
the S-function mdlStart callback method.

• Output — Select the check box if you want the parameter value to be passed into
the S-function mdlOutputs callback method.

• Terminate — Select the check box if you want the parameter value to be passed
into the S-function mdlTerminate callback method.

10 If you have work variables to be shared between the start, output, and terminate
routines for the block, click the Work Variables tab.

The Work Variables tab is displayed.
11 Click the Add button. Enter your work variables information in the following fields.

Repeat for the rest of your parameters.

• Variable — Enter the name of the work variable. For example, speed.
• Type — From the list, select the data type for the work variable.
• Size — Enter the maximum size of the work variable.
• Start — Select the check box if you want the work variable value to be passed

into the S-function mdlStart callback method.
• Output — Select the check box if you want the work variable value to be passed

into the S-function mdlOutputs callback method.
• Terminate — Select the check box if you want the work variable value to be

passed into the S-function mdlTerminate callback method.

Save the Configuration

The Simulink Real-Time Driver Authoring Tool allows you to save your configuration
session as a MAT-file.

1 In the Simulink Real-Time Driver Authoring Tool, click the Main tab.

8-6

 Generating Custom Driver Templates

2 Click Save settings.

The tool saves the testdriver.mat file in the current working folder.

You can iteratively change the configuration and resave the MAT-file as often as you like.

Reload the Configuration

The Simulink Real-Time Driver Authoring Tool allows you to reload your configuration
session as a MAT-file.

1 In the Simulink Real-Time Driver Authoring Tool, click the Main tab.
2 Click Load settings.

The tool loads the testdriver.mat file into the tool.

Creating the C File Template

To generate a template for the driver C source code file:

1 In the Simulink Real-Time Driver Authoring Tool, click the Main tab.
2 Select Generate C file template.
3 Click the Build button.

The tool creates the following files:

• testdriver.c

• testdriver.h

• sfcn_testdriver.c

• sfcn_testdriver.tlc

4 With a C-code editor, open the testdriver.c file and edit it. This file receives
the source C code for your driver. The S-function code in sfcn_testdriver.c
references this C file.

Create a C MEX File for the Driver

To create a C MEX file for the driver, you can use either the Simulink Real-Time Driver
Authoring Tool or the mex function.

8-7

8 Using the Simulink Real-Time Driver Authoring Tool

Use the Simulink Real-Time Driver Authoring Tool to build the C MEX file if you have
not edited the C source code file (testdriver.c). If you have edited this file and want
to keep those changes, do not use the Simulink Real-Time Driver Authoring Tool to build
the driver. Doing so overwrites your changes to the C source code. Instead, use the mex
function (see “Create File with mex Function” on page 8-8).

Create File with Authoring Tool

1 In the Simulink Real-Time Driver Authoring Tool, click the Main tab.
2 Select Generate block and mask.
3 Click the Build button.

The tool creates the file sfcn_testdriver.mexw64.

Create File with mex Function

1 In the Command Window, change folder to the one that contains the driver files.
2 Compile and link the MEX-file. For example:

mex sfcn_testdriver.c testdriver.c

This function creates the sfcn_testdriver.mexw64 file.

Customize the Device Driver Mask

The Simulink Real-Time Driver Authoring Tool creates a mask for the device driver.
For guidelines on customizing this mask, see “Driver Mask Guidelines” on page 4-3.
If you customize the mask, do not use the Simulink Real-Time Driver Authoring Tool
again to build your files. Doing so overwrites the driver files and you lose your mask
customizations.

8-8

9

I/O Structures — Alphabetical List

9 I/O Structures — Alphabetical List

xpcPCIDevice

Type definition for PCI configuration space structure

Prototype

typedef struct xpcPCIDeviceStruct{

 uint32_T BaseAddress[6];

 uint32_T VirtAddress[6];

 uint32_T Length[6];

 uint16_T AddressSpaceIndicator[6];

 uint16_T MemoryType[6];

 uint16_T Prefetchable[6];

 uint16_T InterruptLine;

 uint16_T VendorId;

 uint16_T DeviceId;

 uint16_T SubDeviceId;

 uint16_T SubVendorId;

} xpcPCIDevice;

Header File

xpctarget.h

Members

BaseAddress Physical base addresses that the PCI BIOS assigns.
VirtAddress Virtual address of device. You can enter the return

value from xpcReserveMemoryRegion. See
“Description” on page 9-3 for details.

Length Length of each region. This value contains the number
of bytes that the board segment responds to during the
configuration space read. This value can be larger than
the space required by the registers as specified in the
manufacturer documentation.

9-2

 xpcPCIDevice

Indicates whether the board is I/O port mapped or
memory-mapped. Values are one of the following. Check
this value in the manufacturer documentation.
0 Memory-mapped

AddressSpaceIndicator

1 I/O port mapped
Type of memory. This field is relevant only if
AddressSpaceIndicator has a value of 0.
0 Located anywhere in the 32-bit address

space
1 Located below 1 MB

MemoryType

2 Located anywhere in the 64-bit address
space

Prefetchable Indicates whether the memory is prefetchable.
Typically, this field is not required.

InterruptLine Contains the assigned interrupt line, values from 0
through 15. The BIOS assigns this value. You need this
value only if you are writing an interrupt driver.

VendorId Contains vendor ID.
DeviceId Contains device ID.
SubDeviceId Contains subdevice ID.
SubVendorId Contains subvendor ID.

Description

The xpcPCIDevice structure defines the PCI configuration space structure. The
following are additional notes on the BaseAddress field:

• The PCI specification allows the definition of up to six different base addresses
(addressable regions). Most boards respond to one or two of these addresses. Base
addresses are filled in during the BIOS plug and play initialization, before the
Simulink Real-Time kernel starts to execute. The designer of the board decides how
many address spaces are defined and what they are used for. Many boards use one
address space to contain all of the registers for the board, other boards separate
functions into different address spaces. See the board manufacturer documentation
for this information.

9-3

9 I/O Structures — Alphabetical List

• For memory-mapped segments, call the xpcReserveMemoryRegion function to
convert the physical address in BaseAddress to a virtual address. The CPU uses this
address to read and write the segment. You can then optionally save this address in
the VirtAddress field. Save the address if you have several segments and you want
to pass them to a board access library.

See Also

xpcGetPCIDeviceInfo, xpcShowPCIDeviceInfo

9-4

 xpcTime

xpcTime
Type definition of time structure

Prototype
typedef struct xpcTime64Struct{

 uint32_T NanoSecondsLo;

 uint32_T NanoSecondsHi;

} xpcTime64;

typedef union xpcTimeStruct{

 xpcTime64 U64;

 //uint64_T NanoSeconds;

} xpcTime;

Header File
xpctarget.h

Members

U64.NanoSecondsLo Bottom 32 bits of 64-bit value.
U64.NanoSecondsHi Top 32 bits of 64-bit value.

Description

The xPCTime structure holds the time value in nanoseconds, as a 64-bit integer.
NanoSecondsLo and NanoSecondsHi hold the lower and upper 32 bits, respectively.
The xpcGetElapsedTime and xpcSubtractTime functions use this structure to return
time values.

See Also

xpcGetElapsedTime, xpcSubtractTime

9-5

10

I/O Functions — Alphabetical List

10 I/O Functions — Alphabetical List

xpcAllocPhysicalMemory
Allocate physical memory

Prototype
void *xpcAllocPhysicalMemory(uint32_T numBytes)

Header File
xpctarget.h

Arguments

numBytes Allocate specified number of bytes of memory.

Description

The xpcAllocPhysicalMemory function allocates the requested bytes of physical
memory. Functions such as malloc only return virtual memory.

xPCAllocPhysicalMemory allocates physical memory, where physical memory is the
same as the virtual address. Use this function only for allocations requiring direct access
to physical memory, such as allocations for DMA transfers.

See Also

xpcFreePhysicalMemory

10-2

 xpcBusyWait

xpcBusyWait
Wait for specified length of time in seconds

Prototype
void xpcBusyWait(real_T seconds)

Header File
xpctarget.h

Arguments

seconds Length of time to wait, in seconds.

Description

The xpcBusyWait function waits for the specified number of seconds. This function
blocks this specified amount of time.

10-3

10 I/O Functions — Alphabetical List

xpcFreePhysicalMemory
Free physical memory

Prototype
void xpcFreePhysicalMemory(const void *physical)

Header File
xpctarget.h

Arguments

physical Free specified memory.

Description

The xpcFreePhysicalMemory function frees the specified section of physical memory.

See Also

xpcAllocPhysicalMemory

10-4

 xpcGetElapsedTime

xpcGetElapsedTime
Return time since system boot

Prototype
real_T xpcGetElapsedTime(xpcTime *upTime)

Arguments

upTime Pointer to an xpcTime structure.

Description

The xpcGetElapsedTime function returns the time since the system was last booted,
in seconds. You can get this time in nanoseconds by passing a pointer to a previously
allocated xpcTime structure. If you do not want the time in nanoseconds, you can pass a
NULL pointer for the upTime argument.

See Also

xpcTime, xpcSubtractTime

10-5

10 I/O Functions — Alphabetical List

xpcGetPCIDeviceInfo
Return information for PCI device

Prototype
int32_T xpcGetPCIDeviceInfo (uint16_T vendorId, uint16_T deviceId,

 uint16_T subVendorId, uint16_T subDeviceId, uint16_T bus,

 uint16_T slot, xpcPCIDevice *pciInfo);

Arguments

vendorId Enter the vendor ID.
deviceId Enter the device ID.
subVendorId Enter the subvendor ID.
subDeviceId Enter the subdevice ID.
bus Enter the device bus.
slot Enter the slot that contains the device.
pciInfo Pointer to the PciDevice structure.

Header File

xpctarget.h

Description

The xpcGetPCIDeviceInfo function fills the structure, pciInfo, with the PCI
configuration information for the specified PCI device. This information includes base
address, registers, IRQ, and so forth, from the PCI BIOS. It uses the vendor and device
IDs and, optionally, the subvendor and subdevice IDs to search for the board.

You can specify XPC_NO_SUB for subvendor or subdevice ID or XPC_NO_BUS_SLOT for
device slot. With these values, xpcGetPCIDeviceInfo returns the first matching board

10-6

 xpcGetPCIDeviceInfo

that it finds in the PCI BIOS. If you specify a bus and a slot value, the function returns
only a board with matching IDs found at that bus or slot.

Supply valid vendor and device IDs. If you specify values other than XPC_NO_SUB
for subvendor and subdevice IDs, the function matches the board using all four ID
parameters. To find a board using only vendor ID and device ID, use XPC_NO_SUB for
subDeviceId and XPC_NO_SUB for subVendorId.

This function returns 0 if it executes without detecting an error. Otherwise, it returns a
nonzero value.

See Also

xpcPCIDevice xpcShowPCIDeviceInfo

10-7

10 I/O Functions — Alphabetical List

xpcInpB
Read 8-bit data from data register

Syntax

byte_data = xpcinpB(data_port_id)

Description

byte_data = xpcinpB(data_port_id) returns a byte (8-bit) value from I/O data port
data_port_id. To read a register:

1 Send the I/O space address of the data through the output (address) port using
xpcOutpB.

2 Read the data through the input (data) port using xpcInpB.

Header file: xpctarget.h

Examples

Read Current Day of Month

The I/O port address of the real-time clock (RTC) is 0x70 for output and 0x71 for input.
The RTC day-of-month field is at 0x07. Set the device register address for the day-of-
month field, and then read the day-of-month value.

Initialize variables for address port, data port, and day-of-month field.

uint16_T address_port_id = 0x70;

uint16_T data_port_id = 0x71;

uint8_T day_of_month_addr = 0x07;

Set device register address of day-of-month field.

xpcOutpB(address_port_id, day_of_month_addr);

Read day of month value.

10-8

 xpcInpB

uint8_T day_of_month = xpcInpB(data_port_id);

Input Arguments

data_port_id — I/O port bus address of device
uint16_T

I/O port bus address of device to read data from memory.
Example: 0x71

Output Arguments

byte_data — Value returned from device register
uint8_T

The register returns a byte (8-bit) value.

See Also

See Also
xpcOutpB

Introduced before R2006a

10-9

10 I/O Functions — Alphabetical List

xpcInpDW
Read 32-bit data from data register

Syntax

dword_data = xpcinpDW(data_port_id)

Description

dword_data = xpcinpDW(data_port_id) returns a double word (32-bit) value from I/
O data port data_port_id. To read a register:

1 Send the I/O space address of the data through the output (address) port using
xpcOutpDW.

2 Read the data through the input (data) port using xpcInpDW.

Header file: xpctarget.h

Examples

Read Current Second and Minute into 32-Bit Word

The I/O port address of the real-time clock (RTC) is 0x70 for output and 0x71 for input.
The RTC current-second and current-minute fields are at addresses 0x00 and 0x02. Set
the device register address to point to the current-second field, and then read one 32-bit
word. The device returns the second and minute as the first and third bytes.

Initialize variables for address port, data port, and current-second field.

uint16_T address_port_id = 0x70;

uint16_T data_port_id = 0x71;

uint32_T current_second_addr = 0x00;

Set register address of current second field.

xpcOutpDW(address_port_id, current_second_addr);

10-10

 xpcInpDW

Read current second and current minute.

uint32_T second_and_minute = xpcInpDW(data_port_id);

uint8_T second = ((uint8_T*)(&second_and_minute))[0];

uint8_T minute = ((uint8_T*)(&second_and_minute))[2];

Input Arguments

data_port_id — I/O port bus address of device
uint16_T

I/O port bus address of device to read data from memory.
Example: 0x71

Output Arguments

dword_data — Value returned from device register
uint32_T

The register returns a double word (32-bit) value.

See Also

See Also
xpcOutpDW

Introduced before R2006a

10-11

10 I/O Functions — Alphabetical List

xpcInpW
Read 16-bit data from data register

Syntax

word_data = xpcinpW(data_port_id)

Description

word_data = xpcinpW(data_port_id) returns a word (16-bit) value from I/O data
port data_port_id. To read a register:

1 Send the I/O space address of the data through the output (address) port using
xpcOutpW.

2 Read the data through the input (data) port using xpcInpW.

Header file: xpctarget.h

Examples

Read Current Month and Year into 16-Bit Word

The I/O port address of the real-time clock (RTC) is 0x70 for output and 0x71 for input.
The RTC current month and current year fields are at 0x08 and 0x09. Set the device
register address to point to the current month value, and then read one 16-bit word. The
device returns the month and year as the first and second bytes.

Initialize variables for address port, data port, and current-month field.

uint16_T address_port_id = 0x70;

uint16_T data_port_id = 0x71;

uint16_T current_month_addr = 0x08;

Set register address of current-month field.

xpcOutpW(address_port_id, current_month_addr);

10-12

 xpcInpW

Read month and year.

uint16_T month_and_year = xpcInpW(data_port_id);

uint8_T month = ((uint8_T*)(&month_and_year))[0];

uint8_T year = ((uint8_T*)(&month_and_year))[1];

Input Arguments

data_port_id — I/O port bus address of device
uint16_T

I/O port bus address of device to read data from memory.
Example: 0x71

Output Arguments

word_data — Value returned from device register
uint16_T

The register returns a word (16-bit) value.

See Also

See Also
xpcOutpW

Introduced before R2006a

10-13

10 I/O Functions — Alphabetical List

xpcIsModelInit
Return real-time application load state

Prototype
boolean_T xpcIsModelInit(void)

Header File
xpctarget.h

Arguments

none

Description

The xpcIsModelInit function returns a Boolean value to indicate the real-time
application load state:

• true — While real-time application is loading
• false — Start of real-time application execution

You can call this function from the mdlStart and mdlTerminate callbacks.

See Also

“mdlStart and mdlTerminate Considerations” on page 7-3

10-14

 xpcOutpB

xpcOutpB
Write 8-bit data to data register

Syntax

xpcOutpB(data_port_id, byte_data)

Description

xpcOutpB(data_port_id, byte_data) writes a byte (8-bit) value into data port
data_port_id. To write a register:

1 Send the I/O space address of the data register through the output (address) port
using xpcOutpB.

2 Write the data through the input (data) port using xpcOutpB.

Header file: xpctarget.h

Examples

Change Current Day of Month

The I/O port address of the real-time clock (RTC) is 0x70 for output and 0x71 for input.
The RTC day-of-month field is at 0x07. Set the device register address for the day-of-
month field, and then write the new value.

Initialize variables for address port, data port, and day-of-month field.

uint16_T address_port_id = 0x70;

uint16_T data_port_id = 0x71;

uint8_T day_of_month_addr = 0x07;

Set register address of day-of-month field.

xpcOutpB(address_port_id, day_of_month_addr);

Change day of month.

10-15

10 I/O Functions — Alphabetical List

uint8_T day_of_month = 29;

xpcOutpB(data_port_id, day_of_month);

Input Arguments

data_port_id — I/O port bus address of device
uint16_T

I/O port bus address of device to write data into memory.
Example: 0x70

byte_data — Value written into device register
uint8_T

Byte (8-bit) value written into the register.
Example: 28

See Also

See Also
xpcInpB

Introduced before R2006a

10-16

 xpcOutpDW

xpcOutpDW
Write 32-bit data to data register

Syntax

xpcOutpDW(data_port_id, double_word_data)

Description

xpcOutpDW(data_port_id, double_word_data) writes a double word (32-bit) value
into data port data_port_id. To write a register:

1 Send the I/O space address of the data register through the output (address) port
using xpcOutpDW.

2 Write the data through the input (data) port using xpcOutpDW.

Header file: xpctarget.h

Examples

Change Current Second and Minute with 32-Bit Word

The I/O port address of the real-time clock (RTC) is 0x70 for output and 0x71 for input.
The RTC current-second and current-minute fields are at addresses 0x00 and 0x02. Set
the device register address to point to the current-second field. Write one 32-bit word
containing the new second and minute.

Initialize variables for address port, data port, and current-second field.

uint16_T address_port_id = 0x70;

uint16_T data_port_id = 0x71;

uint32_T current_second_addr = 0x00;

Set register address of current second field.

xpcOutpDW(address_port_id, current_second_addr);

10-17

10 I/O Functions — Alphabetical List

Read current second and current minute, along with intervening fields.

uint32_T second_and_minute = xpcInpDW(data_port_id);

Change current second and current minute and send corrected field back.

((uint8_T *)(&second_and_minute))[0] = 1;

((uint8_T *)(&second_and_minute))[2] = 0;

xpcOutpDW(data_port_id, second_and_minute);

Input Arguments

data_port_id — I/O port bus address of device
uint16_T

I/O port bus address of device to write data into memory.
Example: 0x70

double_word_data — Value written into device register
uint32_T

Double word (32-bit) value written into the register.
Example: 0xFFFFFFFF

See Also

See Also
xpcInpDW

Introduced before R2006a

10-18

 xpcOutpW

xpcOutpW
Write 16-bit data to data register

Syntax

xpcOutpW(data_port_id, word_data)

Description

xpcOutpW(data_port_id, word_data) writes a word (16-bit) value into data port
data_port_id. To write a register:

1 Send the I/O space address of the data register through the output (address) port
using xpcOutpW.

2 Write the data through the input (data) port using xpcOutpW.

Header file: xpctarget.h

Examples

Change Current Month and Year with 16-Bit Word

The I/O port address of the real-time clock (RTC) is 0x70 for output and 0x71 for input.
The RTC current month and current year fields are at 0x08 and 0x09. Set the device
register address to point to the current month value. Write one 16-bit word containing
the new month and year.

Initialize variables for address port, data port, and current-month field.

uint16_T address_port_id = 0x70;

uint16_T data_port_id = 0x71;

uint16_T current_month_addr = 0x08;

Set register address of current-month field.

xpcOutpW(address_port_id, current_month_addr);

10-19

10 I/O Functions — Alphabetical List

Change month and year.

((uint8_T *)(&new_month_year))[0] = 2;

((uint8_T *)(&new_month_year)[1] = 29;

xpcOutpW(data_port_id, new_month_year);

Input Arguments

data_port_id — I/O port bus address of device
uint16_T

I/O port bus address of device to write data into memory.
Example: 0x70

word_data — Value written into device register
uint16_T

Word (16-bit) value written into the register.
Example: 0x128

See Also

See Also
xpcInpW

Introduced before R2006a

10-20

 xpcReserveMemoryRegion

xpcReserveMemoryRegion
Return virtual address that corresponds to physical address and mark region as
readable/writable

Prototype
void * xpcReserveMemoryRegion(const void *physical,

 uint32_T numBytes, uint32_T access)

Arguments

physical Starting address of the memory region to be reserved. Typically,
you obtain this address from one of the PCI base address registers.

numBytes Size of region to be located, in bytes.
access Type of access, limited to XPC_RT_PG_USERREADWRITE (read/

write).

Return

The xpcReserveMemoryRegion function returns the virtual address to use to access the
physical address.

Description

This function reserves a region of physical memory (as returned by the PCI BIOS) and
returns the corresponding virtual address. You can later use the virtual address for
pointer addressing.

You can call this function multiple times with the same address. A call to this function
with an already reserved area returns the same virtual address.

The required size differs from board to board. You can obtain the required number
of bytes from the register programming manual of the particular board. This size is
typically a multiple of a page (4096 bytes).

10-21

10 I/O Functions — Alphabetical List

xpcShowPCIDeviceInfo
Display contents of PCIDevice structure

Prototype
void xpcShowPCIDeviceInfo(xpcPCIDevice *pciInfo)

Arguments

pciInfo Pointer to the xpcPCIDevice structure.

Description

This debugging function displays the contents of the PCIDevice structure pointed to by
pciInfo. You can use this function with the xpcGetPCIDeviceInfo function to display
the contents of the xpcPCIDevice structure.

Note: Remove this function from the driver before using the driver to interact with an I/O
module.

See Also

xpcGetPCIDeviceInfo

10-22

 xpcSubtractTime

xpcSubtractTime
Return difference between two times

Prototype
real_T xpcSubtractTime(xpcTime *time, const xpcTime *time2,

 const xpcTime *time1)

Arguments

time Pointer to an xpcTime structure.
time2 Enter the time to subtract.
time1 Enter the time to subtract from.

Description

xpcSubtractTime returns the difference between time1 and time2 (time2 - time1),
in seconds. You can get this time in nanoseconds by passing a pointer to a previously
allocated xpcTime structure. If you do not want the time in nanoseconds, pass a NULL
pointer for the time argument.

See Also

xpcTime, xpcGetElapsedTime

10-23

